

Integrating Non-Dominant Hand and Stylus Interactions
for Tablet Note-Taking Applications

Hsiao-Ching Su
Georgia Institute of Technology

Atlanta, GA USA
kelly.su@gatech.edu

Marites Hendrix
Georgia Institute of Technology

Atlanta, GA USA
mhendrix8@gatech.edu

ABSTRACT
Static toolbars for note-taking applications on tablets is
commonplace, but takes up valuable screen space and
forces users to conform to the application’s needs rather
than the application conforming to a user's needs. Current
static toolbars with stylus options break user concentration
and ignore the potential that the non-dominant hand can
play in the tablet note-taking process. This project aims to
take away the necessity of a static toolbar and gives the
non-dominant hand a role to play in tablet note-taking. This
project allows the non-dominant hand to perform touch
commands that select stylus tool options, perform quick
multi-touch taps for undo, redo and toggling the larger
static toolbar, as well as work with the stylus to perform
intuitive copy and paste gestures for selected drawings. This
was accomplished on an Android tablet with a capacitive
stylus, a Samsung Tab S2 tablet, and Android Studio.

Author Keywords
Tablet; Stylus; pen+touch; thumb; bimanual input; Touch;
Sensing; Drawing; Note-taking

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User
Interfaces. - Graphical user interfaces.

General Terms: Design, Human Factors

INTRODUCTION
A tablet is a dynamic tool that allows a user to perform
tasks that laptops and phones are commonly used for, such
as email checking and web surfing, but sets itself apart with
the ability to write and draw comfortably onto the screen.
As tablet user penetration worldwide has increased from
14% in 2014 to 18.9% in 2019, and over 32.2 million
tablets shipped from just the first 6 months of 2019 alone
(reference [10]), the importance of creating user-centered
applications that focus on the tablet's capability of drawing
and writing has become more relevant.

Note-taking tablet applications are particularly popular for
students and those in the workforce. Current note-taking
applications on tablets follow a similar standard layout: a
static toolbar on one edge of the application and an empty
canvas centered on the screen to write on. This layout has

limitations that hinder productivity and take up valuable
screen space.

With current note-taking application layouts, changing
stylus input types forces a user to break focus from their
current task to go to the toolbar and find the settings they
need. Though note-taking applications such as GoodNotes
on iPad will try to minimize this process by allowing users
to create shortcuts to favorite settings options (i.e. color and
stroke width), this physical movement to the toolbar still
requires the user to break from what psychologists refer to
as "flow" [2].

This project created a note-taking application that took
"flow" into account with its design approach. To take flow
into account, the note-taking application must 1) challenge
and require skill, 2) avoid interruption, 3) allow users to
maintain control 4) give the user speed and feedback, and
lastly 5) transform time (a user in flow perceives time
passing differently than out of flow) [2].

From previous research, it was found that a person that uses
stylus and touch together for tablet-writing is ranked the
highest by users in terms of their overall preference, ease of
use, and accuracy compared to just pen or just touch inputs
[3]. Combining touch and pen balances the pros and cons of
each; for example, the single input point of the pen is
balanced by the multi-touch abilities of the hand, the pen's
high precision can be blended well with the natural feel of a
less precise touch, and more [3]. This project combined the
use of a stylus with the non-dominant hand to encourage
this kind of interaction. Specifically, this project focused on
integrating the use of the non-dominant hand in note-taking
applications in a way that does not disrupt the user and frees
valuable screen space when desired. Currently, the
non-dominant hand has no part in the tablet writing stage,
but the interaction between stylus and touch brings
additional functionality to the writing experience in this
project.

“Pen + Touch = New Tools”, a research paper by Ken
Hinckley, studied how users wrote with a pen and paper
notebook [7]. This project accounts for the findings in this
research. It was found that the non-dominant hand from
users tends to arrange or hold objects and the pen tends to

mailto:kelly.su@gatech.edu
mailto:mhendrix8@gatech.edu

write. Design properties discussed of touch and pen
includes contacts, occlusion, precision, elementary inputs of
hands: thumb, palm, pinch, etc. Taking inspiration from
previous work from Yang Zhang's Pen+Touch Interaction
on Tablets [16], this tablet utilizes a finger from the
non-dominant hand to bring up a quick radial menu for
changing tools for the stylus, as well as different shortcut
colors. Figure 2 from “Thumb + Pen Interaction on Tablets”
[13] demonstrates three methods of thumb and pen
interaction, which inspired part of this project’s design.
This paper described a thumb marking menu [9] with a
spring-loaded mode [6] shown in Figure 6 of “Thumb +
Pen Interaction on Tablets” [13], where the menu springs
out after the non-dominant thumb holds down on the side
edge of the tablet for a short time. The user moves their
thumb along the menu to switch between different choices
while the menu shows animation for the menu item being
selected through a higher opacity or color change.
Secondly, there is a holding spring-loaded mode [13],
where the non-dominant thumb holding at the side edge
calls up a menu at the stylus location, and the user uses the
pen to make choice.

The design for this project was inspired by the works of
Ken Hinckley, Procreate (an iOS art app) and GoodNotes.
The application created for this project successfully
implements new interaction techniques between the
non-dominant hand and the stylus. The non-dominant hand
can bring up a radial menu containing stylus tool options
with any finger, the design of which was inspired by Ken
Hinckley’s work. Multi-touch taps of two fingers, three
fingers and four fingers can trigger undo, redo and toggle
the visibility of the static toolbar on the canvas respectively.
This was inspired by Procreate and was seen as useful in the
note-taking space. Lastly, a new copy and paste method that
utilizes multi-touch was implemented into this project,
driven by the desire for a more intuitive solution to an
action commonly performed by students needing to redraw
basic diagrams and schematics. This particular functionality
aimed to satisfy the need for “flow” for users.

CURRENT NOTE-TAKING APPLICATION TECHNOLOGY
There are many note-taking applications available on iOS
and Android platforms. On iOS, GoodNotes and Notability
are the most dominant apps. Common features available are
paper setting options, importing and exporting notes
to/from different formats, synchronization to the cloud,
searching written text, and sorting papers. Targeting Apple
Pencil users, the tools in these applications include a shape
beautification tool, pencil tool, marker tool, and eraser tool,
all with color and size options [5]. Specifically looking at
GoodNotes, the application inspiring this project, users can
store their top three preferred colors into a frequently used
palette. The lasso tool on this note-taking app is a selection
tool where users can define the area of selection by
free-drawing with the Apple Pencil. The elements within

the selection area drawn can be moved, cut, copied, or
adjusted in size and color after bringing up a separate menu
on a finger hold.

Procreate is an iOS drawing application that has
popularized the heavy use of gestures, particularly gestures
involving multiple fingers [14]. Existing gestures in this app
include a single finger tap and hold for a fully customizable
quick menu, two-finger tap for undo, three-finger tap redo,
four-finger tap toggle of the menu borders, and more. These
gestures enable high user productivity and are starting to
influence popular note-taking applications such as
GoodNotes, who has just added two finger and three finger
double tap undo and redo likely inspired by Procreate [4].

KeyNote, another note-taking application for iOS, has some
unique object manipulation with touch, integrating features
such as "constrain drag", allowing for object dragging in
straight lines, or being able to select multiple objects
through tapping with both hands if desired [1]. This
partially influenced a new copy and paste method integrated
into this project that involves multi-touch.

Gesture and pen/touch interaction is showing its way into
the note-taking field, but is still dominated heavily by the
drawing application market. The goal of this project is to
start integrating the best and most used features in
note-taking with the innovative gestures from artistic
applications and existing note-taking applications.

NEW INTERACTION TECHNIQUES
The note-taking application developed for this project
integrates the following: a circular tool menu that appears
around the placement of a finger from the non-dominant
hand on the screen, new copy and paste functions that use
two fingers or one finger with the stylus for the select tool,
and multi-touch integration for indicating undo, redo and
toggling the visibility of the larger toolbar. This iteration of
the application has been completed with Android studio
with a Samsung Tab S2 paired with a capacitive stylus. This
section will describe how each component was developed
and how each function was implemented.

Application Hierarchy
The application code is divided into three classes:
MainActivity, CanvasUI, and RadialMenu. The
MainActivity class initiates the entire application, creating
the main canvas object (CanvasUI), and the static toolbar. It
lays out the static toolbar to sit at the top of the tablet and
connects each button in the toolbar to their appropriate
functions in the canvas object.

The CanvasUI object handles all touch events for drawing
and handling multitouch, as well as the logic for
manipulating Stroke objects drawn to the canvas. This
canvas defines two other objects: Stroke and GroupCopy. A
Stroke object is important to all drawing functionality in the
application. Every time a user places down his/her stylus,

drags, and lifts, the line created is a Stroke object. The
Stroke object holds the Android native Paint and Path
objects created by the user’s drawing. It also contains the
value of multiple boolean flags that are used for other
functions created in the application, as well as flags that
indicate what tool the Stroke is associated with. A
GroupCopy object holds an array of Strokes and an Android
native RectF object that defines the bounding box around
all the strokes in that array. The GroupCopy object is only
used for the copy and paste functionality.

The CanvasUI class extends the native Android View
object. The logic for drawing and multi-touch quick
functions is done by overriding the onTouchEvent()
function associated with View objects. This event handler
function is triggered by all touch related events for this
project, including: drawing, bringing up the radial menu,
triggering multi-touch functions, and performing copy and
paste. By looking at the MotionEvent value created from
the onTouchEvent(), the number of pointers on the screen
and type of action performed can be identified by its value.

Lastly, the RadialMenu class draws the radial menu and
handles the logic behind selecting color, stroke width, and
tool type from this menu. This object is created within the
CanvasUI and is queried by the canvas for the values
selected by the user in the menu. The radial menu is passed
coordinates of a touch from the canvas to handle where to
draw the menu and to calculate stroke width value.

Distinguish Touch from Stylus
To accomplish basic drawing, the application needed to
detect the difference between a stylus touch and a finger
touch. Tablets with active digitizers, such as the Apple iPad
or Microsoft Surface Pro, are capable of using active styli
that, in software, are distinguishable from touch. The
Samsung Tab S2 used for this application is a capacitive
tablet and cannot use active styli, only passive styli. This
means that both stylus and touch or anything that causes a
change in capacitance on the screen is detected and looks
the same in software [15].

Ideally, this application would have been created for a tablet
with an active digitizer, but due to resource constraints, a
capacitive one was used. To distinguish touch from a stylus,
the touch radius value was used. In the onTouchEvent()
function for Android View objects, the MotionEvent
created from a touch contains a value for the radius of the
touch. This value constantly changes, and for stylus and
touch, the values can sometimes overlap. A running average
had to be calculated to make the stylus vs touch distinction
more accurate.

The longer a stylus or finger is held or dragged on the
screen, the more touch events there are. A value called
touchAvg was created and is reset on every new
ACTION_DOWN event. An ACTION_DOWN event is the

first event to be triggered on the placement of anything to
the screen. As the user draws, the touch radius sampled is
calculated as part of this touchAvg in the CanvasUI.

The CanvasUI object by default assumes that the touch is a
stylus and will begin drawing immediately. If the touchAvg
array has more than 10 samples and is still has an average
value that correlates to the calculated stylus radius, then the
canvas will keep letting the user draw.

If after 10 touch samples the touch radius average is instead
identified as a finger touch, then the Stroke drawn is deleted
and the CanvasUI switches to treating the touch as a finger.
This tolerance of 10 touch samples is short enough to allow
for a relatively accurate detection of touch vs stylus and
also is short enough so that if a finger draws a line, it is
barely noticed by the user before being removed. By
default, the finger touch will trigger the radial menu to pop
up, which is discussed in the next section.

With the distinction of stylus from touch made, basic
drawing capabilities were able to be accomplished. The
CanvasUI object holds an array that contains all Stroke
objects that have been drawn, and this array is iterated
through and drawn by overriding the onDraw() method of
the class.

Thumb Tool Menu
A popular method of writing on a tablet is to have it
propped on a stand so that the tablet is tilted towards the
user and not entirely flat on the table. This means there is a
natural feel to holding the tablet in the non-dominant hand
while the dominant hand is writing. The tool described in
this section is named the thumb tool menu due to the
assumption that a user's hand would be resting on the tablet
and the thumb would be the most accessible finger.
However, this tool is not limited to the thumb, and in
reality, there is no distinction between the thumb and any
other finger. This means that if a user likes to write on a
tablet entirely flat on the table, they can just hold any finger
that feels natural to the screen to pull up the menu.

Upon the press and hold of any finger to the screen, a radial
menu will appear centered on the finger’s placement
(Figure 1). Once the menu appears, as long as the finger is
held down, this menu will not disappear and will hold its
location until the finger leaves the screen. The options on
this menu are the following: Pen, Eraser, Marker (for
highlighter), and Select.

The Pen and Marker tools have three preset color options to
choose from. To select a tool or color, the finger simply has
to be within the angular bounds of the selection. This means
that a user does not have to place their finger directly on top
of any setting since a selection is calculated by the current
touch’s relative angle to the center of the menu. For
example, if selecting Pen, drag the finger to anywhere

within the angular bounds of the Pen section and further
color selection can be made by moving the finger as well.

The RadialMenu class will begin drawing itself at the initial
coordinates of the finger placement when the CanvasUI
object tells it to. As the finger moves, the angle of the
finger’s current coordinates relative to the center is used to
determine what “pie section” to darken when drawing to
show what is currently selected. For Marker and Pen, if the
finger is selecting one of those sections, a further menu is
drawn with three circles showing color options. Only when
the finger lets go of the screen do any of these selections get
sent to the CanvasUI object.

In the original proposal, the static toolbar was going to have
a larger selection of colors so that the user can choose
which three colors for Marker and Pen would be shown on
this menu, but due to time constraints, this was not
implemented.

Figure 1: The left radial menu is being hovered on “Marker”,
and the right is on “Pen”. The hovered tool is darkened and an

arc-shaped color picker expands.

Additionally, for Pen, Eraser, and Marker, as a user’s
non-dominant finger is on the screen and displaying the
radial menu, the tool's stroke width can be changed by
dragging the stylus up and down on the screen (Figure 2).
For example, if the user wants to have a red pen with a size
of 10pt, then first the user will place their thumb on the
screen. The user will drag their thumb to hover over “Pen”
area, then drag over the red color section. As the user holds
their thumb to the screen, they can take the stylus and drag
vertically up or down anywhere on the canvas to change the
tool's stroke width the same way a slider generally handles
this. As the user slides their stylus up and down, the value
of the tool width is shown numerically on the screen. Once
the finger lets go of the canvas, the settings are sent to the
CanvasUI object from the RadialMenu object. Selecting the
Eraser is similar to Pen and Marker when changing its
stroke width, but it does not have the additional arc-shaped
menu for color. However, the Eraser does have a
circle-shaped indication when the user draws an “Eraser
stroke” on the screen (Figure 3), which Pen and Marker do
not have.

This stroke width value is implemented by evaluating the
touch event coordinate change in the vertical direction of

the stylus. When the radial menu is showing, the CanvasUI
object is switched to “menu mode”. When in menu mode, if
a second pointer appears, this triggers the RadialMenu
object to begin calculating stroke width based on the second
pointer. This second pointer is assumed to be the stylus as
this is the natural option when writing. When the stylus is
placed down, its y-coordinate position on the screen is
defined as its initial position. As the y-value changes, the
stroke width value increased or decreased by 5 pixels for
every 50 pixels moved on the screen. The smallest value for
stroke width is 5 pt and the largest stroke width allowed is
50 pt.

Figure 2: Pen and Marker tool with Radial Menu: Selecting

the color by non-dominant hand and changing the stroke
width by the stylus. The gray arrows indicate the stylus’s

movement on the screen.

Figure 3: The circle-shaped indication of the Eraser tool, and

the strokes of Pen and Marker in the middle.

Multi-touch Integration
The note-taking application looks out for multi-touch events
from the non-dominant hand. While a single finger hold
brings up the radial tool menu, two, three and four-finger
taps are assigned different quick functions.

Inspired from Procreate, an advanced drawing application
for the iOS, a two finger touch will trigger "undo". This
allows a user to quickly undo something they just drew,
saving time from having to select the eraser tool and
dragging the stylus around manually for every small
mistake. If done on accident, a three finger tap will trigger
"redo". The undo/redo functionality is done by having the
CanvasUI keep track of a “delete list” of Stroke objects.
When undo is keyed, the most recent Stroke in the canvas
stroke list is deleted and that Stroke is placed into the delete
list. For redo, the most recently added Stroke to the delete
list is added to the end of the Canvas Stroke list and
removed from the delete list to be drawn again.

A four finger tap hides and shows the main static toolbar.
Though the key to this application is the radial menu, a full
toolbar should still be available so that quick colors and
options can be set, and more advanced options can be
selected. This project does not implement more options in
the toolbar due to time constraints, but with more time it
would. By allowing this toolbar to hide, this lets the user
have the full screen be their canvas. A four finger tap is a
fast way to bring the toolbar up, change some settings, and
go back to primarily using the radial menu.

Every touch event in Android can be associated with a
value. If the MotionEvent object action value is 773, it is
associated with an ACTION_DOWN event with four
pointers on the screen. This triggers the visibility toggle of
the static toolbar. There are unique values for a two finger
tap, three finger tap and a single pointer on the screen as
well.

The functions associated with each tap are not directly
called after the tap, however. While a four finger tap
triggers the value 773, it also triggers the values for three
fingers, two fingers and one finger at the same time. With a
three finger tap, the values for a two finger and one finger
tap is made as well. To not call multiple functions at once,
the calling of a function is done after the onTouchEvent() is
completed. The values created from the MotionEvent are
processed after the full touch event so that only one
function is triggered at a time.

Select Tool Expansion
Traditionally, the lasso tool in drawing applications lets a
user free-draw around a group of objects to select them
[8][11][12]. Different functions can be performed on the
selected objects by right-clicking or tapping on the objects
to open a menu. With note-taking, the lasso tool is
popularly used to simply rearrange drawn objects or to copy
and paste diagrams or drawings that need to be done
repeatedly. Equations, diagrams, and drawings are
commonly repeated when taking notes in class, so a faster
way to complete this will be useful.

This project accomplishes a basic select tool that performs
this same functionality, but also accomplishes a new way to
copy and paste (Figure 5). Once the select tool is chosen
from the radial menu, a user can drag a dashed square
around the object they want to move or copy. Once all
desired objects are at least partially within the rectangle
drawn, a user can tap within that rectangle and the rectangle
will snap to fit over all selected objects as seen in Figure 4.
Then the user can drag the object on the screen to move it to
another location with their stylus.

The first rectangle drawn is just the initial selection
rectangle. To determine what objects are within the
selection rectangle, each Stroke object’s Android Path value
is approximated into an array of points. Each point is
iterated over and checked to see if it is inside the drawn
rectangle. If any point of a Stroke’s Path is within this
selection rectangle, then the entire Stroke object is
considered selected. After drawing the initial selection
rectangle, tapping the stylus within that rectangle creates a
new dashed rectangle that fits around all objects selected.
This is done by calculating all the bounding boxes of each
selected stroke and calculating a new bounding box that
uses the max and min points from this array of bounding
boxes.

The new copy function expands this basic selection
functionality and works similarly to fanning cards out on a
table. Once making a normal selection, copy and paste can
be performed. The user can place the stylus onto the item
being copied, and as they hold the stylus down, a finger can
take and drag the object to the side. Copies of the drawing
are stamped in increments and follow the path that the
finger moves in. The longer and farther the item is dragged,
the more copies are made. If the stylus drags out in a large
"S" shape, then the copies will be stamped out in this "S"
shape on the document, which is demonstrated in Figure 5.

Figure 4: Create a selection, tap in bounds of the dashed

rectangle and then move the selected strokes around.

Figure 5. Bimanual copy and paste: the stylus holds onto the
selected item and the non-dominant hand index finger drags
along the gray line, making copies of the selected item along

the trajectory.

Once copies are made and when the user lets go, all objects
created will be left selected. This makes it easy for users to
take their fingers or the stylus and rearrange each copy
individually onto the canvas to their desired location. When
the user is done rearranging, they can simply tap onto a
not-active portion of the canvas (outside of any bounding
box drawn) and deselect all the drawings.

The copy and paste logic involves setting a flag to let the
code know that it is in “copy mode”. When a user has made
a normal selection and a second pointer enters the screen
(assuming the first pointer is still within the selected area to
keep the selection active), then copy mode begins. Within
copy mode, the coordinate of the 2nd pointer is kept track
of. This means that all copy and paste functionality is based
on the movement of the finger placed down.

The beginning of copy mode starts with creating a
GroupCopy object. A GroupCopy object is an object that
holds an array of Strokes and a RectF object that defines the
bounding box that goes around that array of Strokes. The
group of Strokes being copied becomes a GroupCopy
object, and this entire object with the Strokes inside is all
set to active with a boolean flag called isActive set to true.
This flag being true means that the bounding box rectangle
should be drawn and that the object is movable. The
original GroupCopy object is seen as the “stamp” that is
getting dragged on the canvas to copy.

As the 2nd pointer moves on the screen, more touch events
are created. Every 30 touch events, a new copy is stamped
onto the canvas. This copy is made by taking the “stamp”
GroupCopy’s current location and creating a new
GroupCopy object that is a deep copy of the stamp. This
copy is left as active and remains in place as more copies
are being made.

The only GroupCopy object that is moved is the original
stamp. As the 2nd pointer moves on the screen, the
displacement is mirrored by all the stamp Strokes and the
bounding box RectF object by displacing the coordinates to
the pointer’s location. To move just the stamp copy, there is
a boolean flag listed called isStamp that tells the code that
when in copy mode, only move the stamp group. Outside of
copy mode, normal selection moves Strokes that are flagged
with isActive as true, so there needed to be a new flag so
that copies are left active but not moving.

Once all desired copies are made, the last place the stamp
group was left is its final placement, and the GroupCopy’s
isStamp flag is set to false. The stamp is now seen the same
way as all copies are seen by the canvas - just a normal
active group. Rearranging copied objects is simply done by
checking the location of a touch. If the touch is within any
bounding box rectangle, then the group will be displaced
with the movement of the touch. If a touch is made outside
from any bounding box, then all GroupCopy objects and
Strokes are set to inactive and normal Select functionality
can be done again.

Conclusion
Overall, this application uses existing technology and APIs
to conform a note-taking application to the user and their
needs. Users are able to utilize the entire screen as their
canvas, while being able to switch between popularly used
tools naturally with the non-dominant hand that already
rests near or on the tablet. Tool changes are faster, and
balances the skill needed to operate the radial tool with
minimal interruption time from the true task at hand:
note-taking.

REFERENCES
1. Apple. 2010. Manipulate objects in Keynote.

(2010). Retrieved October 1, 2019 from
https://help.apple.com/iwork/1.3/safari/index.html
#tan72232abf

2. Benjamin B. Bederson. 2004. Interfaces for
staying in the flow. (September 2004). Retrieved
September 28, 2019 from
https://ubiquity.acm.org/article.cfm?id=1074069

3. Peter Brandl, Clifton Forlines, Daniel Wigdor,
Michael Haller, and Chia Shen. 2008. Combining
and Measuring the Benefits of Bimanual Pen and
Direct-Touch Interaction on Horizontal Interfaces.
Proceedings of the working conference on
Advanced visual interfaces - AVI 08 (2008).
DOI:http://dx.doi.org/10.1145/1385569.1385595

4. GoodNotes. 2019. GoodNotes 5.1 adds gesture
control for undo & redo. (May 2019). Retrieved
October 1, 2019 from
https://medium.goodnotes.com/goodnotes-5-1-add
s-gesture-control-for-undo-redo-2dc7db3a87b6

https://help.apple.com/iwork/1.3/safari/index.html#tan72232abf
https://help.apple.com/iwork/1.3/safari/index.html#tan72232abf
https://ubiquity.acm.org/article.cfm?id=1074069
http://dx.doi.org/10.1145/1385569.1385595
https://medium.goodnotes.com/goodnotes-5-1-adds-gesture-control-for-undo-redo-2dc7db3a87b6
https://medium.goodnotes.com/goodnotes-5-1-adds-gesture-control-for-undo-redo-2dc7db3a87b6

5. GoodNotes. 2019. Introducing GoodNotes 5.
(January 2019). Retrieved October 1, 2019 from
https://medium.goodnotes.com/introducing-goodn
otes-5-387ba7dc3ae0

6. Ken Hinckley, Francois Guimbretiere, Patrick
Baudisch, Raman Sarin, Maneesh Agrawala, and
Ed Cutrell. 2006. The Springboard: Multiple
Modes in One Spring-loaded Control. Proceedings
of the SIGCHI conference on Human Factors in
computing systems - CHI 06 (2006).
DOI:http://dx.doi.org/10.1145/1124772.1124801

7. Ken Hinckley et al. 2010. Pen + touch = new tools.
Proceedings of the 23nd annual ACM symposium
on User interface software and technology - UIST
10 (October 2010).
DOI:http://dx.doi.org/10.1145/1866029.1866036

8. Gordon Kurtenbach and William Buxton. 1991.
Issues in combining marking and direct
manipulation techniques. Proceedings of the 4th
annual ACM symposium on User interface
software and technology - UIST 91 (1991).
DOI:http://dx.doi.org/10.1145/120782.120797

9. Gordon Kurtenbach and William Buxton. 1994.
User Learning and Performance with Marking
Menus. Conference companion on Human factors
in computing systems - CHI 94 (1994).
DOI:http://dx.doi.org/10.1145/259963.260376

10. Shanhong Liu. 2019. Tablets - Statistics & Facts.
(May 2019). Retrieved October 1, 2019 from
https://www.statista.com/topics/841/tablets/

11. Sachi Mizobuchi and Michiaki Yasumura. 2004.
Tapping vs. circling selections on pen-based
devices. Proceedings of the 2004 conference on
Human factors in computing systems - CHI 04
(2004).
DOI:http://dx.doi.org/10.1145/985692.985769

12. Thomas P. Moran, Patrick Chiu, and William Van
Melle. 1997. Pen-based interaction techniques for
organizing material on an electronic whiteboard.
Proceedings of the 10th annual ACM symposium
on User interface software and technology - UIST
97 (1997).
DOI:http://dx.doi.org/10.1145/263407.263508

13. Ken Pfeuffer, Ken Hinckley, Michel Pahud, and
Bill Buxton. 2017. Thumb + Pen Interaction on
Tablets. Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems - CHI 17
(2017).
DOI:http://dx.doi.org/10.1145/3025453.3025567

14. Margaret Stewart. 2018. 14 of the Best Procreate
Gestures that will Save You Time. (April 2018).
Retrieved October 1, 2019 from

https://theletteringlodge.com/procreate-gestures-sa
ve-time/

15. Teoh Yi Chie. 2017. Artist Guide to Active vs
Capacitive Styluses. Parka Blogs.Retrieved
December 2, 2019 from
https://www.parkablogs.com/content/artist-guide-a
ctive-vs-capacitive-styluses

16. Yang Zhang et al. 2019. Sensing Posture-Aware
Pen+Touch Interaction on Tablets. In Proceedings
of the 2019 CHI Conference on Human Factors in
Computing Systems (CHI '19). ACM, New York,
NY, USA, Paper 55, 14 pages. DOI:
https://doi.org/10.1145/3290605.3300285

https://medium.goodnotes.com/introducing-goodnotes-5-387ba7dc3ae0
https://medium.goodnotes.com/introducing-goodnotes-5-387ba7dc3ae0
http://dx.doi.org/10.1145/1124772.1124801
http://dx.doi.org/10.1145/1866029.1866036
http://dx.doi.org/10.1145/120782.120797
http://dx.doi.org/10.1145/259963.260376
https://www.statista.com/topics/841/tablets/
http://dx.doi.org/10.1145/985692.985769
http://dx.doi.org/10.1145/263407.263508
http://dx.doi.org/10.1145/3025453.3025567
https://theletteringlodge.com/procreate-gestures-save-time/
https://theletteringlodge.com/procreate-gestures-save-time/
https://www.parkablogs.com/content/artist-guide-active-vs-capacitive-styluses
https://www.parkablogs.com/content/artist-guide-active-vs-capacitive-styluses
https://doi.org/10.1145/3290605.3300285

